1,980 research outputs found

    Globular Cluster Abundances from High-Resolution, Integrated-Light Spectroscopy. II. Expanding the Metallicity Range for Old Clusters and Updated Analysis Techniques

    Full text link
    We present abundances of globular clusters in the Milky Way and Fornax from integrated light spectra. Our goal is to evaluate the consistency of the integrated light analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of 7 clusters from our previous publications and results for 5 new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from integrated light spectra agrees to ∼\sim0.1 dex for globular clusters with metallicities as high as [Fe/H]=−0.3-0.3, but the abundances measured for more metal rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na I, Mg I, Al I, Si I, Ca I, Ti I, Ti II, Sc II, V I, Cr I, Mn I, Co I, Ni I, Cu I, Y II, Zr I, Ba II, La II, Nd II, and Eu II. The elements for which the integrated light analysis gives results that are most similar to analysis of individual stellar spectra are Fe I, Ca I, Si I, Ni I, and Ba II. The elements that show the greatest differences include Mg I and Zr I. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the integrated light results for other important elements.Comment: Accepted for publication in ApJ, 37 pages, 13 tables, 29 figure

    The chemical evolution of Manganese in different stellar systems

    Full text link
    Aims. To model the chemical evolution of manganese relative to iron in three different stellar systems: the solar neighbourhood, the Galactic bulge and the Sagittarius dwarf spheroidal galaxy, and compare our results with the recent and homogeneous observational data. Methods. We adopt three chemical evolution models well able to reproduce the main properties of the solar vicinity, the galactic Bulge and the Sagittarius dwarf spheroidal. Then, we compare different stellar yields in order to identify the best set to match the observational data in these systems. Results. We compute the evolution of manganese in the three systems and we find that in order to reproduce simultaneously the [Mn/Fe] versus [Fe/H] in the Galactic bulge, the solar neighbourhood and Sagittarius, the type Ia SN Mn yield must be metallicity-dependent. Conclusions. We conclude that the different histories of star formation in the three systems are not enough to reproduce the different behaviour of the [Mn/Fe] ratio, unlike the situation for [alpha/Fe]; rather, it is necessary to invoke metallicity-dependent type Ia SN Mn yields, as originally suggested by McWilliam, Rich & Smecker-Hane in 2003.Comment: 9 pages, 3 figures, submitted to A&

    The Evolution of Oxygen and Magnesium in the Bulge and Disk of the Milky Way

    Full text link
    We show that the Galactic bulge and disk share a similar, strong, decline in [O/Mg] ratio with [Mg/H]. The similarity of the [O/Mg] trend in these two, markedly different, populations suggests a metallicity-dependent modulation of the stellar yields from massive stars, by mass loss from winds, and related to the Wolf-Rayet phenomenon, as proposed by McWilliam & Rich (2004). We have modified existing models for the chemical evolution of the Galactic bulge and the solar neighborhood with the inclusion of metallicity-dependent oxygen yields from theoretical predictions for massive stars that include mass loss by stellar winds. Our results significantly improve the agreement between predicted and observed [O/Mg] ratios in the bulge and disk above solar metallicity; however, a small zero-point normalization problem remains to be resolved. The zero-point shift indicates that either the semi-empirical yields of Francois et al. (2004) need adjustment, or that the bulge IMF is not quite as flat as found by Ballero et al. (2007); the former explanation is preferred. Our result removes a previous inconsistency between the interpretation of [O/Fe] and [Mg/Fe] ratios in the bulge, and confirms the conclusion that the bulge formed more rapidly than the disk, based on the over-abundances of elements produced by massive stars. We also provide an explanation for the long-standing difference between [Mg/Fe] and [O/Fe] trends among disk stars more metal-rich than the sun.Comment: 22 pages including 5 figures. Submitted to the Astronomical Journa

    An Update on the 0Z Project

    Get PDF
    We give an update on our 0Z Survey to find more extremely metal poor (EMP) stars with [Fe/H] < -3 dex through mining the database of the Hamburg/ESO Survey. We present the most extreme such stars we have found from ~1550 moderate resolution follow up spectra. One of these, HE1424-0241, has highly anomalous abundance ratios not seen in any previously known halo giant, with very deficient Si, moderately deficient Ca and Ti, highly enhanced Mn and Co, and low C, all with respect to Fe. We suggest a SNII where the nucleosynthetic yield for explosive alpha-burning nuclei was very low compared to that for the hydrostatic alpha-burning element Mg, which is normal in this star relative to Fe. A second, less extreme, outlier star with high [Sc/Fe] has also been found. We examine the extremely metal-poor tail of the HES metallicity distribution function (MDF). We suggest on the basis of comparison of our high resolution detailed abundance analyses with [Fe/H](HES) for stars in our sample that the MDF inferred from follow up spectra of the HES sample of candidate EMP stars is heavily contaminated for [Fe/H](HES) < -3 dex; many of the supposed EMP stars below that metallicity are of substantially higher Fe-metallicity, including most of the very C-rich stars, or are spurious objects.Comment: to appear in conference proceedings "First Stars III", ed. B. O'Shea, A. Heger & T.Abel, 4 pages, 2 figure
    • …
    corecore